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ABSTRACT 

 
 
It is common practice to summarize the skill of weather forecasts using an agglomeration 

of samples spanning many locations and times.  In many of these calculations, there is an 

implicit assumption that the climatological frequency of event occurrence is fixed for all 

samples.  If the event frequency actually varies among the samples, then a fictitiously 

high skill may be reported.  The extra fictitious skill reflects the ability of the forecast 

system to distinguish variations of the climatology among the samples rather than true 

forecast skill.   This affects many common deterministic verification metrics such as 

threat scores.  Probabilistic forecast metrics such as the Brier skill score, relative 

operating characteristic, and economic value diagrams are also affected.  Demonstrations 

of the false skill are provided, and guidelines are suggested for how to adapt these 

diagnostics to avoid this problem.
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1. Introduction 

 This article will demonstrate that many commonly used weather forecast verification 

metrics report positive forecast skill when none truly exists or report more skill than the 

forecast truly has.    Depending on the metric and the event being verified, this effect can be 

large or small.   Unfortunately, hundreds of peer-reviewed publications on weather forecast 

verification over the last half century may have reported exaggerated skill. 

 Our study of this problem has been motivated by our own experiences in weather 

forecast verification.  We have encountered circumstances where we have diagnosed large 

positive skill when intuition suggested that little or no skill would exist.   For example, the 

first author used a common probabilistic forecast verification metric, the relative operating 

characteristic, in a comparison of ensemble forecast methods (Hamill et al. 2000b).  The 

author reported a relative operating characteristic curve for windspeed forecasts at 5 days 

lead that were consistent with a nearly perfect forecast, different than forecast experience 

would suggest.  The second author discussed the overestimation of forecast skill (Juras 2000) 

in a comment on a Buizza et al. (1999) article. It was suggested that the chosen metrics might 

report false skill if climatological frequencies vary within the verification area.  This issue 

has also been raised indirectly in other publications, including Buizza (2001; p. 2335), Atger 

(2003), and Glahn (2004; p. 770), 

 This article extends the comments of Juras (2000) and the others.  We will examine 

four common skill metrics, the Brier skill score (Wilks 1995), the relative operating 

characteristic (Swets 1973, Harvey et al. 1992), economic value diagrams (Richardson 2000), 

and the equitable threat score (Schaefer 1990).  All are capable of reporting positive forecast 

skill when none is present.  Many other metrics such as the ranked probability skill score 
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(Wilks 1995, Epstein 1969, Murphy 1971) and other contingency-table based threat scores 

will not be discussed but are subject to the same problem. 

  Section 2 will provide a brief review of the four chosen verification metrics, as well 

as descriptions of how they are computed.  Section 3 follows with a very simple example of 

false skill and an explanation of why it occurs.  Section 4 shows that the false value may or 

may not be reported with real meteorological data, depending on what event is being 

considered.  Section 5 demonstrates how large the effect can be for a common verification 

problem, the threat scores of short-range precipitation forecasts.  Section 6 concludes with a 

discussion of the implications and how to change verification tactics to avoid this problem. 

 
2. Computation of common verification metrics 
 
 
 Below, we review four general verification metrics, the Brier skill score, relative 

operating characteristic, economic value diagram, and equitable threat score.  After the 

review, we describe how each of these metrics can be calculated in several different ways. 

 The long-used Brier score (Brier 1950) is a measure of the mean-square error of 

probability forecasts for a dichotomous (two-category) event, such as the occurrence/non-

occurrence of precipitation.  A review is provided in Wilks (1995), and references therein 

provide further background.   The Brier score is often hard to interpret; is a Brier score of 

0.06 good or bad?  Consequently, the Brier score is often converted to a skill score, its value 

normalized by the Brier score of a reference forecast such as climatology (ibid).  A Brier skill 

score (BSS) of 1.0 indicates a perfect probability forecast, while a BSS of 0.0 should indicate 

the skill of the reference forecast (see Mason 2004 for further discussion of whether a BSS of 

0.0 indicates no skill).   
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 The relative operating characteristic (ROC) has gained widespread acceptance in the 

past few years as a metric for ensemble verification.  The ROC has been used for decades in 

engineering, biomedical, and psychology applications; see an overview in Swets (1973).   Its 

application in meteorology was proposed in Mason (1982), Stanski et al. (1989), and Harvey 

et al. (1992).   In the Hamill et al. (2000a) summary of an ensemble workshop, it was 

recommended by the ensemble verification community as a standard metric, and the ROC 

was recently made part of the World Meteorological Organization’s (WMO) standard 

(WMO, 1992).  Characteristics of the ROC have been discussed in Buizza et al. (1998), 

Mason and Graham (1999), Juras (2000), Wilson (2000), Buizza et al. (2000ab), Wilks 

(2001), Kheshgi and White (2001), Kharin and Zwiers (2003), and Marzban (2004).  The 

technique has been used to diagnose forecast accuracy in, for example, Buizza and Palmer 

(1998), Buizza et al. (1999), Hamill et al. (2000b), Palmer et al. (2000), Richardson (2000, 

2001ab), Wandishin et al. (2001), Ebert (2001), Mullen and Buizza (2001, 2002), Bright and 

Mullen (2002), Yang and Arritt (2002), Legg and Mylne (2004), Zhu et al. (2002), Toth et al. 

(2003), and Gallus and Segal (2004). Harvey et al. (1992) provide a thorough review of the 

concepts underlying the ROC. 

 Economic value diagrams were introduced to the meteorology community by  

Richardson (2000).   These diagrams provide information about the potential economic 

value of ensemble forecasts for a particular event.  The diagrams indicate the relative 

value as a function of the user’s cost/loss ratio.  A value of 1.0 indicates that the full 

economic value of a perfect forecast should be realized, and a value of 0.0 indicates the 

value of climatology.  This framework was also used in Palmer et al. (2000) and 
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Richardson (2001b).  Demonstrations of its application value can be found, for instance, 

in Richardson (2000), Palmer et al. (2000), Buizza et al. (2003), and Zhu et al. (2002). 

 The equitable threat score (ETS) provides one of many ways of summarizing the 

ability of a deterministic forecast to correctly forecast a dichotomous event.  The ETS 

will produce a score of 1.0 for a perfect forecast, and random or climatological forecasts 

should be assigned a value of 0.0.  The ETS is commonly used to evaluate the skill of 

forecasts, especially precipitation.  See, for example, Rogers et al. (1995, 1996), Hamill 

(1999), Bayler et al. (2000), Stensrud et al. (2000), Xu et al. (2001), Ebert (2001), Gallus 

and Segal (2001), Chien et al. (2002), and Accadia et al. (2003). 

 The method for computing these metrics is now discussed, starting with the 

probabilistic metrics.  The BSS, ROC, and economic value diagrams will be generated 

from ensemble forecasts, though they can be generated from any probabilistic forecast.  

 Start by defining a dichotomous event of interest, such as occurrence/non-

occurrence of precipitation, or temperature above or below a threshold.  Let Xe(j,k) = 

[X1(j,k), … , Xn(j,k)] be an n-member ensemble forecast of the relevant scalar variable 

(again, precipitation or temperature) for the jth of m locations and the kth of r case days.  

The ensemble at that day and location is first sorted from lowest to highest.  This sorted 

ensemble is then converted into an n-member binary forecast Ie(j,k) = [I1(j,k), … , In (j,k)] 

indicating whether the event was forecast (=1) or not forecast (=0) in each member.  The 

observed weather is also converted to binary, denoted by Io(j,k).  

 

a.  Brier skill scores 
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 Assuming that each member forecast is equally likely, a forecast probability 

pf(j,k) is calculated from the dichotomized ensemble:  

 pf (j,k) = 
Ii ( j,k)i=1

n

!
n

  .      (1) 

The Brier score of the forecast BSf is calculated as 

 BSf =
k=1

r

! pf ( j,k) " Io( j,k)( )
2

j=1

m

!  .     (2) 

A Brier skill score (BSS) is calculated as  

 BSS = 1.0 – BSf / BSc  ,       (3) 

where BSc is the Brier score of the reference probability forecast, typically the probability 

of event occurrence from climatology.    

 An ambiguity and potential source of false skill may be traced to the method for 

calculating BSc.  One method would be to generate a climatological probability pc(j) of 

event occurrence unique to each location of the m locations in the domain,  

 pc ( j) =

Io
k=1

r

! j,k( )

r
,        (4) 

in which case BSc would be  

 BSc = pc j( ) ! Io j,k( )( )
j=1

m

"
k=1

r

"
2

  .    (5) 

Another way would be to calculate a climatology pc averaged over all locations 

 pc =

Io j,k( )
j=1

m

!
k=1

r

!

r "m
 ,        (6) 

and let 
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 BSc = pc ! Io j,k( )( )
j=1

m

"
k=1

r

"
2

 .      (7) 

Differences in the calculation from using (4) – (5) instead of (6) – (7) will be illustrated 

in sections 3 and 4. 

 

b. ROC diagrams 

 Calculation of the ROC starts with the population of 2x2 contingency tables, with 

separate contingency tables tallied for each sorted ensemble member and location.   The 

contingency table for the jth location and ith sorted ensemble member has four elements: 

Γi(j) = [ ai(j), bi(j), ci(j), di(j)], indicating the relative fraction of hits, misses, false alarms, 

and correct rejections (Table 1).  The contingency table is populated using data over all r 

case days, and then each is normalized so the sum of the elements is 1.0.   

 The hit rate (HR) for the ith sorted forecast and jth location is defined as  

 

 HRi j( ) =
ai j( )

ai j( ) + bi j( )
.       (8) 

 

Similarly, the false alarm rate is defined as 

 

 FARi j( ) =
ci j( )

ci j( ) + di j( )
.       (9) 

 

The ROC for the jth of m locations is a plot of HRi (j) (ordinate) vs. FARi (j) (abscissa), i 

= 1, … , n. A ROC curve that lies along the diagonal HR=FAR line indicates no skill; a 
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curve that sweeps out maximal area, as far toward the upper left corner as possible, 

indicates maximal skill. 

 It has often been judged to be more convenient to examine one rather than m 

different ROC curves.  Hence, a single ROC is commonly generated from contingency 

tables averaged over all locations, i.e., !
i
= ai ,bi ,ci ,d i( )where ai = a

i
(j)

j=1

m

! / m , and 

bi ,ci , and d i are similarly defined.  Then  

 

 HR
i
=

ai

ai + bi

         (10) 

and  

 FAR
i
=

ci

ci + di
        (11) 

 

c.  Economic value diagrams 

 Table 1 also indicates the economic costs that are associated with each 

contingency.   See Zhu et al. (2002) for a more complete review of the underlying 

principles.  The assumption is that an economic decision may be made upon the forecast 

information.  Suppose adverse weather is associated with the event Io(j,k)=1. Based on 

the forecast information the decision maker can protect, at cost C, against adverse effects, 

taking an additional smaller unprotectable loss Lu if the event occurs.  If the event is not 

forecast to occur but it does occur, a total loss L = Lp + Lu is realized, where Lp is the 

additional loss that could have been protected against (Lp and Lu are commonly 

considered fixed quantities for a particular user).   A correct NO forecast incurs no cost.   
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 The expected expense due to a decision based on the ith ensemble member 

forecast at the jth location can be shown (ibid) to be  

 
 Ef (i,j,C) = ai (j) (C + Lu) + ci (j) C + bi (j) (Lp + Lu) .   (12) 

 
Let o(j) be the climatological frequency of the event occurrence, o(j) = ai (j)+ bi(j)  (note 

that the same o(j) will be calculated regardless of the value of i).  The expected expense 

associated with using climatological information for a decision is 

 
 Ec(C) = o(j) Lu + Min (o(j) Lp , C) .      (13) 

 
The expected expense of a perfect forecast is  

 
 Ep (C) = o(j) (C + Lu) .       (14) 

 
Assume Lp and Lu are fixed.  The overall expected economic value for the ith sorted 

ensemble forecast at the jth location and the cost C is  

 

 V (i, j,C) =
Ec C( ) ! Ef i, j,C( )

Ec C( ) ! Ep C( )
 .     (15) 

 
This value is typically calculated for a range of C between 0 and Lp. At the jth location, 

the user then has n possible expected values associated with using each of the n ensemble 

forecasts as a possible decision threshold.  The user typically chooses the one that 

provides the largest value.   

 
 Vmax(j,C) = max (V(1,j,C) , … , V(n,j,C))     (16) 
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The determination of the optimal Vmax(j,C) is typically re-calculated for other C’s with 

values between 0 and Lp, since a different sorted ensemble member may provide the 

largest value for a different C.  The optimal value is plotted as a function of C / Lp .  

 As with ROCs, the user may prefer to examine only one economic value diagram 

synthesizing information over all locations.  This could be computed in two ways; an 

averaged value V max (C)  could be computed first as an average of values at the different 

locations 

 V max (C) =
1

m
V
max
( j,C)

j=1

m

! .       (17) 

Alternatively, economic value could be calculated from the average contingency tables 

Γi.  In this case, o = ai + bi , and then (12) – (14) are replaced by  

 E f i,C( ) = ai C + Lu( ) + ciC + bi Lp + Lu( ) ,     (18) 

 Ec (C) = oLu + Min(oLp ,C) ,       (19) 

 E p C( ) = o C + Lu( ) .        (20)  

Then (15) is replaced by 

 V (i,C) =
Ec (C) ! E f i,C( )

Ec (C) ! E p (C)
.       (21) 

(16) and (17) are replaced by  

 
 
V max C( ) = max V 1,C( ),…,V n,C( )( ) .     (22) 

d.  Equitable threat score 
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 Assume now that we have a deterministic forecast rather than an ensemble.   The 

ETS could be calculated for each j of the m locations using Table 1 (but dropping the i 

subscript denoting the ensemble member number).  The equation for the ETS is 

 ETS( j) =
a( j) ! ar ( j)

a( j) + b( j) + c( j) ! ar ( j)
,      (23) 

where ar(j) is the expected fraction of correct forecasts for a random forecast 

 ar ( j) =
a( j) + c( j)( ) a( j) + b( j)( )

a( j) + b( j) + c( j) + d( j)
.      (24) 

 Commonly the ETS is calculated using contingency tables summed over all the 

grid points.  Let a = a(j)
j=1

m

! / m , and define b,c , and d similarly.  Then an ETS that 

presumably represents the domain-averaged skill is calculated from  

 ETS =
a ! ar

a + b + c ! ar
,        (25) 

where 

 ar =
a + b( ) a + c( )
a + b + c + d

.        (26) 

 

3. An example of false skill: synthetic data at two independent locations 

 

 Suppose our world consists of two small, isolated islands, and suppose weather 

forecasting is utterly impossible on this planet; the best one can do is to forecast the 

climatological probability distribution appropriate to each island.  To simulate this, 

assume that at island 1, the daily maximum temperature was randomly sampled from its 

climatological distribution ~ N(+2, 1), that is, the temperature was a draw from a normal 



 13 

distribution with a mean of 2.0 and a standard deviation of 1.0.  At island 2, the daily 

maximum temperature ~ N(-2, 1).  100-member ensembles of weather forecasts were 

generated by taking random draws from each island’s climatology.  100,000 days of 

weather and ensemble forecasts were simulated, and we consider the event that the 

temperature was greater than 0.  On island 1, both verification and ensemble ~ N(+2, 1) 

and were drawn independently.  The same process was repeated for island 2, but 

verification and ensemble ~ N(-2, 1) .   

 

a.  Brier skill scores 

 From the synthetic verification and sorted ensembles,  the BSS was calculated 

two ways, assuming the reference score could be calculated individually using (5), or 

over both islands using (7).  The BSS was 0.0 (correct) when using (5) and 0.95 

(incorrect) when using (7). Using a climatology averaged over the two stations as the 

reference was clearly inappropriate. 

 

b. Relative operating characteristics 

 ROCs were generated for each island individually  (Figs. 1 a–b) using (8) - (9), 

and indeed, these each show no skill (area = 0.5).   To generate one ROC over the two 

islands, (10) – (11) were used.  A ROC was then generated from the pooled tables (Fig. 

1c).  Note the very large positive area under the ROC curve, suggesting nearly perfect 

forecast skill.   

 Why was skill now indicated by the ROC?  By compositing data over the two 

islands, the ROC analysis no longer implicitly assumed that the climatological 
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distribution was ~ N(+2, 1)   or   ~ N(-2, 1).  Rather, it assumed that the climatological 

distribution was ~ 0.5 • N(+2, 1) +0.5 • N(-2, 1), a bimodal distribution.  Further, the 

contingency tables were populated consistent with the assumption that the forecast 

perfectly predicted which mode of the distribution the verification lay in; when the 

forecasts were drawn from the positive mode N(+2, 1), the observed states were also 

drawn from the positive mode N(+2, 1),  and when the forecasts were drawn from N(-2, 

1),  the observed state were drawn from N(-2, 1) as well.   This can be demonstrated by 

generating a ROC simulated under these assumptions.  Such a ROC is identical to that in 

Fig. 1c.  This illustrates that the ROC can report false skill in situations where the 

climatologies differ among the samples used to populate the contingency tables. The 

ROC credits a forecast with having skill merely if the sample’s climatology are different 

than the climatology of the sum of the samples. 

 

c. Economic value diagrams. 

 Figure 2 shows the economic value diagrams under the assumption that Lu = 0.  

As with the ROCs, the economic value was nil when computed at the individual islands 

using (16), but the diagram indicated that when averaged contingency tables and (22) 

were used, near-perfect economic value was realized at moderate cost/loss ratios.  The 

underlying explanation is the same as for the ROC, the redefinition of climatology from 

the inappropriate compositing of contingency table elements. 

 

d.  Equitable threat score 
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 The ETS for islands 1 and 2, calculated using (23), are 0.0 at each island.  When 

contingency tables are added and (25) is used to calculate ETS, the score is 0.86.   

 

e.  Synthesis 

 Suppose we had sampled not from N(+2, 1) and N(-2, 1) distributions but from 

N(α, 1) and N(-α, 1), where α could be arbitrarily changed.  If  α were 0, then of course, 

no false skill would be reported, for the two islands would have the same climatology.  

As α is increased, we would expect to see an increase in the amount of false skill.  Figure 

3 illustrates this, repeating the experiment above and plotting the area under the ROC 

curve using eqs. (10) – (11), the BSS using (7),  and the ETS using (25), as a function of 

α.  The more the climatologies differ between the samples, the larger the false skill 

reported.  

 

4. Climatological forecasts of 850 hPa temperature 

 

 Consider whether or not false skill can be reported with real data.   0000 UTC 850 

hPa temperature analyses were extracted from the NCEP-NCAR reanalysis at a set of 

26x12 grid points covering the conterminous United States (US).  Data was considered 

for the first ~ 2 months (60 days) of 1979 to 2001.   The grid spacing was 2.5° in latitude 

and longitude.  Let T denote the temperature at a grid point, and T ’ denote the 

temperature anomaly from the mean.  Three events were considered:  (1) T > 0C, (2) T ’ 

> 3C, and (3) T ’ > Q 2/3, where Q 2/3 was the upper tercile of the climatological 

distribution, i.e., the temperature threshold defining the boundary between the lower two-
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thirds of the distribution and the upper third. Q 2/3 was specified uniquely for each grid 

point.  

 First the method for generating contingency tables for the event T > 0C is 

described.  For each of the first 60 days of the year and for each of the 23 years (1380 

samples), the following process was performed at each grid point:  (1) the analyzed 

temperature was extracted at that grid point, (2) the cross-validated, climatological 

probability of the event was determined using the other 22 years of data,  

(3) a cross-validated, 50-member ensemble was randomly drawn from the other 22 years 

of temperature samples at that grid point,  (4) the ensemble was sorted, and (5) 

contingency tables were populated for that grid point.  After all grid points were 

processed in this manner, average contingency tables for all of the grid points were also 

generated.   To generate contingency tables for the ETS, the process was the same, but a 

single random sample from the climatology was drawn rather than an ensemble. 

 When generating ROCs, economic values, and ETSs for the events T ’ > 3C, and 

T ’ > Q 2/3, several additional steps were required.  After step (1) above, the 

climatological mean for each date and location was determined and subtracted from the 

temperature, creating a database of temperature anomalies.  The estimated climatological 

mean was estimated using a 30-day window centered on each day and cross-validated by 

year, using the remaining 22 years.  Also, the terciles of the distribution were determined 

for each grid point. 

 

a.  T  > 0 C 

 The climatological probabilities for this event varied from 0.005 in the north to 
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1.0 in the south.  The mean climatological probablility was 0.59 with a standard deviation 

of 0.36. 

 When a location-dependent reference climatology was used (eqs. 4-5), the BSS 

was -0.03.  When a domain-averaged climatology was used (eqs. 6-7), the BSS reported a 

false skill of +0.52. 

 Figure 4a shows ROCs calculated from the individual grid point data; the ROC 

for every third grid point in the N-S and E-W directions are plotted.  The ROCs exhibit 

sampling variability but lie close to the HR=FAR line.  However, the ROC based on a 

contingency table summed up over all the grid points (Fig. 4b) diagnosed a very large 

amount of skill.   Figure 4c shows that when the economic value is calculated separately 

at each grid point and then averaged, its value was effectively zero.  However, the 

economic value calculated from the contingency table sums was large.  Again, these were 

artifacts of the widely differing climatologies for the grid points, as in section 2. 

 Table 2 reports the ETS for this event.  The ETS was calculated for each of the m 

locations using (23) and then averaged.  For some of these locations, the denominator of 

(23) was zero and the ETS was undefined, so the average ETS reported in Table 1 was 

calculated excluding these locations.  The ETS was also calculated using the summed 

contingency tables and (25), excluding the same locations in calculating the table sums.  

As Table 2 shows, the average ETS was zero, but the ETS from the table sums was 

0.345, reporting a false positive skill because of the differing climatology. 

 

b. T ’ > 3 C 
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 Considering events defined by anomalies of temperature rather than temperature 

itself, the ensemble should have a much more consistent climatology from grid point to 

grid point.  However, at the southernmost, more tropically influenced grid points, a 

deviation of 3C represented a relatively large deviation from climatology, while at the 

northernmost grid points, 3C reported a smaller deviation.  The climatological probability 

of exceeding a 3C deviation ranged from 0.44 in the north to 0.07 in the south.  The mean 

climatological probability was 0.30 with a standard deviation of 0.08. 

 When the location-dependent reference climatology was used, the reported BSS 

was -0.03.  When the domain-averaged climatology was used, the BSS was  

-0.002.  The extra skill when using the domain-averaged climatology was much less than 

when the fixed threshold was tested in section 4a; this was a consequence of the 

climatological probabilities varying much less widely. 

 Figures 5 a-b show the ROCs for individual grid points and from the summed 

contingency tables, respectively, and Fig. 5c shows the economic values as in Fig. 4c.  

The area under the ROC curve was much reduced but was still slightly greater than the 

expected 0.5.  The economic value from the contingency table sums still reported 

unrealistic positive value at cost-loss ratios around 0.3, but they were much smaller. 

 The ETS reported in Table 2 increased only a bit more than 1 percent when 

changing from reporting the average of the grid points to contingency table sums. 

 

c. T ’ > Q 2/3 

 By evaluating the probability of exceeding a quantile of the distribution, the 

climatological probabilities have been rendered uniform across all grid points; the 
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climatology probability is of course 1/3 for this event.  By construction, the BSS was the 

same for both, -0.03 (it was less than zero because the 50-member random draw from 

climatology only approximates the true climatology).  With ROCs and economic values, 

whether we examined the average of scores at the grid points or computed the scores 

from contingency table sums, we found no skill  (Fig. 6).  Similarly, the ETSs (Table 2) 

reported the same lack of skill regardless of the how the ETS was computed. 

 

5.  Equitable threat scores for numerical precipitation forecasts 

 

 One of the primary goals of the U. S. National Weather Service is to improve 

forecasts of precipitation.  The ETS is one measure that is very commonly used to 

evaluate the skill of their deterministic forecasts.    The most common approach is to 

estimate the ETS for fixed precipitation thresholds from a contingency table populated 

over many days or months and over a wide geographic region such as the conterminous 

US.  We demonstrate here that the ETS calculated in this manner can drastically 

overestimate forecast skill. 

 To demonstrate this, a very large set of numerical forecasts was used, provided by 

the analog forecast technique discussed in Hamill et al. (2005).  The details of the 

forecast methodology can be found in this reference but are not particularly important 

here.  What is germane is that we produced a 25-year time series of gridded deterministic 

precipitation forecasts, all using the same model and forecast technique.  These forecasts 

have characteristics similar to those of current operational forecasts.  For this 

demonstration, we limit ourselves to considering the ETS of the mean of the ensemble of 
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analog forecasts over the conterminous US for January and February from 1979 to 2003.    

Both the forecast and the verification data (from the North American Regional 

Reanalysis, Mesinger et al. 2005) are on a ~30 km grid. 

 Figure 7 illustrates the geographic dependence of the ETS on forecast location.  

Skill is much larger in the southeast US and along the west coast than in the northern 

Great Plains.  Table 3 provides the ETS, calculated both as an average of the values at the 

grid points (eq. 23) and from the contingency table sums (eq. 25).  Notice that skill from 

contingency table sums is increasingly overestimated as the precipitation threshold is 

increased.   The same underlying problem is at work; it is possible to take two different 

contingency tables that each report an ETS of zero, sum them, and report a positive ETS.  

The greater the relative differences in the climatology, the greater the relative effect. 

 

6.  Discussion 

 The preceding examples have demonstrated that the Brier skill score, relative 

operating characteristic, economic value diagrams, and the equitable threat score must be 

used with care when verifying weather forecasts.  Typically, the meteorological question 

being asked is something akin to “what is the general skill of my forecast averaged over 

Europe?”  The naïve approach for calculating the Brier skill score may be to compute it 

under the assumption that the climatology is invariant across the verification region.  

Similarly, when diagnosing the relative operating characteristic, economic value, or 

equitable threat score, a common step is to composite the forecast data into contingency 

tables that accumulate weather information across the domain.  The preceding analysis 

showed that these diagnostics may falsely report positive skill in situations where the 
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climatology differs across the domain.  The more the climatology differs, the larger the 

falsely reported skill.  By logical extension, false skill may also be reported if the 

verification samples span different seasons or even different times of the day with 

different climatologies. 

 Several implications can be made about forecast verification:  

 • Many prior verification studies (including at least two by the lead author, 

Hamill 1999 and Hamill et al. 2000b), should be re-evaluated, for the reported 

skill may be erroneous. 

 • In order to avoid reporting false skill, the researcher can alter his or her 

verification methodology.  Alternative methodologies can be used that should not 

report false skill, such as:  (1) analyze events where the climatological 

probabilities are the same throughout the sample (e.g., Buizza et al. 2003, Fig. 5, 

or Zhu et al. 2002).  Section 4 demonstrated that, for example, relative operating 

characteristics, economic value diagrams, and equitable threat scores of 

climatological forecasts of quantiles of the 850 hPa temperature distribution did 

not report false positive skill.  Regardless of whether the climatological means 

and variances are large or small, the fraction events classified as “yes” events are 

identical for different locations or times of the year.  (2) If sample sizes are large 

enough, perform the calculations separately each for sub-sample with a different 

climatology.  The data could then be summarized in some manner; for the relative 

operating characteristic, perhaps with a histogram of area for each of the sub-

samples; for the equitable threat score or Brier skill score, perhaps with a 

histogram or a map of the skill scores at individual grid points with differing 
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climatologies (e.g., Fig. 7);  for economic value, perhaps with an average of the 

value curves at individual grid points. 

• The specific details regarding how the verification metrics are calculated 

should be fully described in journal articles and texts.  Minor changes in the 

methodology can dramatically change the reported scores. 

 • Other scores such as the ranked probability skill score (Wilks 1995) can 

also falsely report positive skill, just as with the Brier skill score. Whatever the 

chosen verification metric, it is wise to verify that climatological forecasts give 

the expected no-skill result before proceeding.  

 • Richardson (2001) demonstrated in a carefully controlled experiment 

that there was a theoretical equivalence between the Brier skill score and the 

integral of economic value assuming that users have a uniform distribution of 

cost-loss ratios between 0 and 1.  One of the underlying assumptions was an 

invariant climatology across all samples.  If this assumption is not met, then 

neither is this equivalence. 

 

 Despite these specific recommendations, we hope readers understand a more 

worrying implication:  we have forgotten or ignored the assumptions underlying the 

correct application of many weather verification techniques.   For example, the relative 

operating characteristic can be traced back to its roots in biostatistics and engineering 

literature.  The underlying theory assumes that the tester seeks information on the 

differences between two fixed distributions.  Perhaps the tester seeks to describe 

differences in the distribution of blood pressure for a group on a particular medication 
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and a distribution for a control group not on the medication.  With two fixed 

distributions, the relative operating characteristic is able to quantify the tradeoffs between 

Type I statistical errors (inappropriate acceptance of the null hypothesis) versus Type II 

statistical errors (inappropriate rejection of the alternative hypothesis) as a decision 

threshold is changed.   What is the meaning of the relative operating characteristic when 

contingency tables are comprised of samples from distributions that are not fixed?  

Certainly, we cannot expect it to tell us about tradeoffs between Type I and Type II 

errors, for we have violated the underlying assumptions.   

 We hope this article will stimulate others to re-examine forecast verification. Do 

we commonly violate other underlying assumptions?  
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Figure 7:  ETS for 1-2 day 1 mm precipitation forecasts as a function of location, using 
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     Event forecast by ith member?  

     YES    NO 
   ------------------------------------------------------------------------ 
  YES |  ai (j)  |  bi (j)   | 
Event   |    Mitigated loss (C+Lu) | Loss (L = Lp + Lu) | 
Observed?  |---------------------------------- | ---------------------------------- | 
  NO |  ci (j)  |  di (j)  | 
   |        Cost (C)  |        No cost  |  
   ------------------------------------------------------------------------ 
 
 
Table 1:  Contingency table for the ith of the n sorted members at the jth location, 
indicating the relative fraction of hits [ai(j)], misses [bi(j)], false alarms [ci(j)], and correct 
rejections [di(j)].   The economic costs associated with each contingency are also shown 
and are discussed in the text. 

 
 
 
 
 
 
 
 

      Event  

            T > 0       T’ > 3      T’ > Q 2/3    
   ------------------------------------------------------ 
ETS (average of     |       -0.001 |     -0.001 |      -0.002 | 
grid points)  |  |  |  | 
   ------------------------------------------------------- 
ETS (contingency |        0.345 |      0.012 |       -0.002      | 
table sum)  |  |  |  | 
   ------------------------------------------------------- 
 
 
Table 2:  Equitable threat scores for the events T > 0,  T’ > 3, and T’ > Q 2/3, calculated as 
an average over all grid points with nonsingular ETS, and the ETS from the sum of 
contingency table elements at these grid points. 
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         Event  

        > 1mm      > 5mm     > 10mm     > 25mm     > 50mm 
  ------------------------------------------------------------------------------------------ 
ETS (avg. of    |        0.362 |       0.264 |      0.162 |       0.019 |       0.002 | 
grid points) |  |  |  |  |  | 
  ------------------------------------------------------------------------------------------ 
ETS (contin.    |        0.426 |       0.438 |      0.369 |       0.115 |       0.041 | 
table sum) |  |  |  |  |  | 
  ------------------------------------------------------------------------------------------ 
 
Table 3:  Equitable threat scores for the events of 1-2 day precipitation forecast amount 
greater than 1, 5, 10, 25, and 50 mm. ETS calculated as an average over all grid points 
with nonsingular ETS, and the ETS from the sum of contingency table elements at these 
grid points. 
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Figure 1:  ROC diagrams for the event of temperature > 0.  (a) Island 1, (b) Island 2, (c) 
Islands 1 and 2 together. 
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Figure 2: Economic value for the event temperature > 0 at islands 1, 2, and both. 
 
 

 
Figure 3: ROC area, BSS, and ETS as a function of the parameter α describing the 
difference in the means of the distributions between the two islands.  Skill scores are 
calculated assuming a composite climatology. 
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Figure 4: ROC and economic value for the event of 850 hPa temperature > 0 C using 
random draws from climatology using data from January-February 1979-2001. (a) ROC 
curves for selected individual locations around conterminous US, (b) ROC curve based 
on sum of contingency tables at individual grid points, and (c) economic value, plotted 
both as an average of values at individual grid points (dashed), or from the contingency 
table sums (solid).
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Figure 5:  As in Fig. 4, but for the event of 850 hPa temperature anomaly > 3C. 
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Figure 6: As in Fig. 4, but for the event of 850 hPa temperature anomaly is greater than 
the upper tercile of the climatological distribution.   
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Figure 7:  ETS for 1-2 day 1 mm precipitation forecasts as a function of location, using 
Jan-Feb 1979-2003 forecast and observational data. 


